Pre-Processing-Free Gear Fault Diagnosis Using Small Datasets with Deep Convolutional Neural Network-Based Transfer Learning
نویسندگان
چکیده
Early fault diagnosis in complex mechanical systems such as gearbox has always been a great challenge, even with the recent development in deep neural networks. The performance of a classic fault diagnosis system predominantly depends on the features extracted and the classifier subsequently applied. Although a large number of attempts have been made regarding feature extraction techniques, the methods require great human involvements are heavily depend on domain expertise and may thus be non-representative and biased from application to application. On the other hand, while the deep neural networks based approaches feature adaptive feature extractions and inherent classifications, they usually require a substantial set of training data and thus hinder their usage for engineering applications with limited training data such as gearbox fault diagnosis. This paper develops a deep convolutional neural network-based transfer learning approach that not only entertains pre-processing free adaptive feature extractions, but also requires only a small set of training data. The proposed transfer learning architecture consists of two parts; the first part is constructed with a piece of a pre-trained deep neural network that serves to extract the features automatically from the input, the second part is a fully connected stage to classify the features that needs to be trained using gear fault experiment data. The proposed approach performs gear fault diagnosis using preprocessing free raw accelerometer data and experiments with various sizes of training data were conducted. The superiority of the proposed approach is revealed by comparing the performance with other methods such as locally trained convolution neural network and angle-frequency analysis based support vector machine. The achieved accuracy indicates that the proposed approach is not only viable and robust, but also has the potential to be readily applicable to other fault diagnosis practices.
منابع مشابه
Cystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملProvide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery
Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning method...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملSmall Fault Diagnosis of Front-end Speed Controlled Wind Generator Based on Deep Learning
In view of the difficulty in diagnosing the early small faults of front-end controlled wind generator (FSCWG), this paper proposes a small fault diagnosis methods based on deep learning. The method adopts a deep learning method, uses vibration data under several different small fault patterns of FSCWG as input of the model and gets deep learning diagnosis model by learning complicated implicit ...
متن کاملIntegration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.08904 شماره
صفحات -
تاریخ انتشار 2017